Life in the Cloud: TeraPixel and MODISAzure

Catharine van Ingen Partner Architect eScience Group, Microsoft Research CSIRO 26 October 2010

Introduction

- The data deluge/landslide/tsunami/explosion is here
 - Science happens when multiple KB to PB datasets can be mashed up simply
- Commodity computing is here
 - Massive data centers, multi-core workstations, TB disks
- > Yet resource, tedium, and complexity barriers exist
 - What programming paradigms are most efficient when people are the most significant cost?

TeraPixel

I can see clearly, the rain is gone, I can see all obstacles in my way. Jimmy Clift

Seamless Visualization of the Night Sky

- Source imagery taken over 50 years by Palomar and Schmidt astronomical surveys
- 1791 image pairs (23040x23040 or 14000x14000 images) (4TB)
- Image process introduces artifacts

Image Correction and Plate Generation

- Devignetting and artifact corrections
 - Correcting edge and corner darkening and varying levels in brightness, noise and saturation.
 - Creating a matrix of per pixel normalized correction factors and programmatically normalizing at selected regions.
- Astrometric Alignment
 - Generation of a new blue plate that has the same pixel granularity and location as the red plate
- Color Correction
 - Applying saturation and noise floor to red and blue channels; generating a green channel
- Plate Creation
 - Each color image is cropped to 19,200 x 19,200 pixels

TOAST Reprojection and Stitching

- Color images reprojected to TOAST (Tessllated Octahedral Adaptive Subdivision Transform)
 - 3 bits per pixel sky view
 - 2 bits per pixel seam location mask
 - 13 level tile pyramid
- Stitched together to set all gradients across image boundaries to zero
 - Executes in lockstep across all processes

M. Kazhdan, D. Surendran, H. Hoppe. Distributed gradient-domain processing of planar and spherical images, *ACM Trans. on Graphics*, 29(2), 14, 2010.

Four Stage Image Processing Pipeline

- Trident Scientific Workflow Workbench manages the overall process from the desktop
- DryadLINQ and .NET parallel extensions manages the server execution
- Microsoft Windows HPC Server provides the basic scheduling and monitoring abstractions

Dryad

- Use a cluster as if it were a single computer
 - Sequential, single machine programming abstraction
 - Same program runs on single-core, multi-core, or cluster
- Continuously deployed since 2006
 - The execution engine for Bing
 - > 10⁴ machines with single clusters > 3000 machines
 - Sifting through datasets > 10 PB daily
- Familiar programming languages and development environment
 - C#, VB, F#, IronPython...with .NET, Visual Studio or other IDE

http://connect.microsoft.com/dryad

http://research.microsoft.com/collaboration/tools/dryad.aspx

LINQ

- Microsoft's Language INtegrated Query
- A set of operators to manipulate datasets in .NET
 - Support traditional relational operator such as select, Join, GroupBy, Aggregate, etc.
 - Integrated into .NET programming languages: programs can call operators and operators can invoke arbitrary .NET functions
- Data model
 - Data elements are strongly typed .NET objects
 - Much more expressive than SQL tables
- Extremely extensible
 - Add new custom operators
 - Add new execution providers

DryadLINQ

- Distributed execution plan generation
 - Static optimizations: pipelining, eager aggregation, etc.
 - Dynamic optimizations: data-dependent partitioning, dynamic aggregation, etc.
- Vertex runtime
 - Single machine (multi-core) implementation of LINQ
 - Vertex code that runs on vertices
 - Data serialization code
 - Callback code for runtime dynamic optimizations
 - Automatically distributed to cluster machines

Example: Word Count

Count word frequency in a set of documents:

```
var docs = new PartitionedTable < Doc > ("dfs://yuan/docs");
var words = docs.SelectMany(doc => doc.words);
var groups = words.GroupBy(word => word);
var counts = groups.Select(g => new WordCount(g.Key, g.Count()));
counts.ToTable("dfs://yuan/counts.txt");
```


Execution Plan for Word Count

Execution Plan for Word Count

Vignetting for Image Normalization

- Three sequential algorithms:
 - ImageToRows: loads, normalizes and shreds an image into a row of pixels
 - ReduceStackRows: per pixel averaging across plates
 - SaveFlatField: persist results

 PartitionedTable Creation to hold source imagery

DryadLINQ to distribute computation

TeraPixel By the Numbers

- Input: 1791 pairs of red blue images:
 - 417 GB
- Output: 1025 full color 24bit TOAST pyramid files:
 - 800 GB.
- Cluster: 64 compute nodes 8 core Intel Xeon, 16 GB RAM, 1.7 TB storage, 1 Gbps link

- Generation of RGP plates
 - 5 hours processing
- Image stitching into a spherical image
 - 3 hours processing
- Image optimization to remove seams
 - 4.5 hours processing
- Results staging off cluster
 - 2.5 hours

- The resulting image:
 - 24 bit RGB terapixel image of the night sky.
 - 500,000 HDTVs to view image at full resolution
 - A football field sized paper to print the image

MODISAzure

Behind every cloud is another cloud.

Judy Garland

Synthesizing Imagery, Sensors and Field Data

Climate classification ~1 MB (1 file)

Vegetative clumping ~5MB (1 file)

NCEP/NCAR ~100MB (4K files)

Not just a simple matrix computation due to dry region leaf/air temperatures differences, snow cover, leaf area fill, temporal upscaling, gap fill, biome conductance lookup, C3/C4 plants, etc etc

NASA MODIS imagery archives 5 TB (600K files) for 10 US years

The Tedium Factor: Do Scientists have to become Computer Scientists? Source

- Downloading
 - Example: identifying and downloading the swath precursors necessary to reproject a given sinusoidal cell
- Reprojection.
 - Example: latitude-longitude swaths to sinusoidal cells.
- Spatial resampling .
 - Example: converting from 1 KM to 5 KB pixels.
- Temporal resampling
 - Example: converting from daily observation to 8 day averages.pixel)
- Gap filling
 - Example: assigning values to pixels without data due to cloud or satellite outages.
- Masking
 - Examples: eliminating pixels over the ocean when computing land product or outside a spatial feature such as a watershed.

Grunge means you're doing science

Four Stage Image Processing Pipeline

- Data collection stage
 - Downloads requested input tiles from NASA ftp sites
 - Includes geospatial lookup for non-sinusoidal tiles that will contribute to a reprojected sinusoidal tile
- Reprojection stage
 - Converts source tile(s) to intermediate result sinusoidal tiles
 - Simple nearest neighbor or spline algorithms
- Derivation reduction stage
 - First stage visible to scientist
 - Computes ET in our initial use
- Analysis reduction stage
 - Optional second stage visible to scientist
 - Enables production of science analysis artifacts such as maps, tables, virtual sensors

http://research.microsoft.com/en-us/projects/azure/azuremodis.aspx

MODISAzure: Architectural Big Picture (1/2)

- ModisAzure Service is the Web Role front door
 - Receives all user requests
 - Queues request to appropriate Download, Reprojection, or Reduction Job Queue

- Service Monitor is a dedicated Worker Role
 - Parses all job requests into tasks
 recoverable units of work
 - Execution status of all jobs and tasks persisted in Tables

MODISAzure: Architectural Big Picture (2/2)

- All work actually done by a GenericWorker Worker Role
- Dequeues tasks created by the Service Monitor
- Science executable is sandboxed on an Azure Worker instance thereby enabling simple desktop development and debug

- Marshalls all storage from/to Azure blob storage to/from local Azure Worker instance files
- Retries failed tasks 3 times
- Maintains all task status

Inside A Generic Worker

- Manages application sandbox
 - Ensures all application binaries such as the MatLab runtime are installed for "known" application types
 - Stages all input blobs from Azure storage to local files
 - Passes any marshalled inputs to uploaded application binary
 - Stages all output blobs to Azure storage from local files
 - Preserves any marshalled outputs to the appropriate Task table
- Manages all task status
 - Dequeues tasks created by the Service Monitor
 - Retries failed tasks 3 times
 - Maintains all task status
- Simplifies desktop development and cloud deployment

Determining What to Download

- Each product is either swath or sinusoidal projection
 - Sinusoidal are ready to use
 - Groups of swath products must be reprojected to create a sinusoidal tile
- NASA publishes a geometadata information for the two Terra and Aqua satellites
- For each 5 minute swath data file (or granule) on the ftp site there is a corresponding geometa file containing: DayNightFlag indicating day, night or both; corner point latitude/longitude; bounding coordinates
- We ingested all files (288 per day * 10 years * 2 satellites) into a SQL database then paged the information into our Azure ScanTimeList and GeoMeta Tables
- The dayScanTimeList in the ScanTimeList table identifies all swath source file precursors for a given sinusoidal tile and drives the download and reprojection

	M*D04	Aerosol				
	M*D05	Precipitable water				
	M*D06	Cloud				
	M*D07	Temperature, ozone				
N	1CD43B*	Albedo				
	M*D11	Surface temperature				
	M*D15	LAI				
MOD13A2		Vegetation Index				
M	ICD12Q1	Land Cover				
1	MOD44B	Veg. Contig. Fields				

Source Data Download Service

Example: Download the required source files for the target sinusoidal tile: MYD04_L2, Year 2002, Day 185, h08v05

Reduction Service (Only One Stage Shown)

Pipeline Stage Interactions

- The Web Portal Role, Service Monitor Role and 5 Generic Worker Roles are deployed at most times
 - 5 Generic Workers are sufficient for reduction algorithm testing and development (\$20/day)
 - Early results returned to scientist while deploying up to 93 additional Generic Workers; such a deployment typically takes 45 minutes
 - Deployment taken down when long periods of idle time are known
 - Heuristic for scaling number of Generic Workers up and down
- Download stage runs in the deep background in all deployed generic worker roles
 - IO, not CPU bound so no competition
- Reduction tasks that have available inputs run preferentially to Reprojection tasks
 - Expedites interactive science result generation
 - If no available inputs and a backlog of reprojection tasks, number of Generic Workers scale up naturally until backlog addressed and reduction can continue
 - Second stage reduction runs only after all first stage reductions have completed
- Reduction results can be downloaded following emailed link to zip file

Download

Reprojection

Reduction

Costs for 1 US Year ET Computation

- Computational costs driven by data scale and need to run reduction multiple times
- Storage costs driven by data scale and 6 month project duration
- Small with respect to the people costs even at graduate student rates!

MODISAzure Global Computation By the Numbers

- ▶ 194 sinusoidal cells, each covers 1.2x1.2 KM or 11M 5 KM pixels)
- ▶ 1.06 M reprojected tiles and 40.5K source sinusoidal tiles
- ▶ 8 TB (>10 M files) downloaded from NASA ftp
- Not all files are downloaded or reprojected at first (3 rapid retries) attempt or actually available due to satellite outage, polar winter, missing tiles, etc etc.

US

- 55 NASA download days
- 150K reprojection compute hours
- 940 TB moved across Azure fabric
- 10 download result days (est) via IN2 bridge

fluxtower global

15 seconds on the Cray Jaguar (1.75 PFLOPs), but only if we could get the PB in

Agility

The computation changed over time while Azure just scaled

Predictability

- Performance varies over time: rerunning the same task gives different timings on different days
- Performance varies over space: satellites are over the poles mo often

Average reprojection time (after algorithm improvements!) as a function of longitude

Observed VM starts for 76-100 VMs

Reliability

- Even with 99.999% reliability, bad things happen
 - 1-2 % of MODISAzure tasks fail but succeed on retry

From AzureBlast

Worst case attempt to start 250 VMs

http://research.microsoft.com/en-us/people/barga/faculty_summit_2010.pdf

Fiscal Responsibility

- Billing is daunting
 - Neither we nor our academic collaborators are used to seeing bills
 - How *should* we think about them?
 - No billing cap means constant monitoring
- Billing is confusing
 - Instances are billed when deployed even if actually idle so comparing our usage log to the bill is at best approximate
 - Daily storage costs are amortized over the billing cycle so you must guestimate end cost
 - While you can ask for a refund, that takes a verified support call outage and time.
 - Online bill is autogenerated so must be accessed manually (no email)

								Servic Servic e Info e Info	
Event Date		e Region	Resource	Consumed	Sub Region	Service	Component	1 2	Additional Info
4/15/2010	Windows Azure Compute Windows Azure	North	Compute Hours	75	South Central	Compute	MODIS Data Services(Modis Data Service)		ComputeSmall
4/15/2010	Platform - All Service Windows Azure		Data Transfer Out (GB)	0.001257	US South Central	Storage	MODIS Source Data Products		External
4/15/2010	Platform - All Service Windows Azure		Data Transfer in (GB) – Off Peak	0.000001	US South Central	Storage	MODIS Source Data Products		External
4/15/2010	Platform - All Service Windows Azure	s America North	Data Transfer Out (GB) - Off Peak	0.000018	US South Central	Storage	MODIS Source Data Products		External
4/15/2010	Platform - All Service Windows Azure	America North	Data Transfer Out (GB) - Off Peak	0.00044	US South Central	Storage	Reduction Results		External
4/15/2010	Platform - All Service Windows Azure	North	Data Transfer Out (GB) - Off Peak	0.00002	US South Central	Storage	Reprojection Results		External
4/15/2010	Platform - All Service Windows Azure	America North	Data Transfer in (GB)	0.000032	US South Central	Compute	MODIS Data Services(Modis Data Service)		External
4/15/2010	Platform - All Service Windows Azure	Morth	Data Transfer Out (GB)	0.000033	US South Central	Compute	MODIS Data Services(Modis Data Service)		External
4/15/2010	Platform - All Service Windows Azure	America North	Data Transfer in (GB) - Off Peak	0.000005	US South Central	Compute	MODIS Data Services(Modis Data Service)		External
4/15/2010	Platform - All Service Windows Azure	Morth	Data Transfer Out (GB) - Off Peak	0.000003	US South Central	Compute	MODIS Data Services(Modis Data Service)		External
4/15/2010	Platform - All Service Windows Azure	North	Data Transfer Out (GB)	0.00026	US South Central	Storage	Resources		External
4/15/2010	Platform - All Service Windows Azure	s America	Data Transfer In (GB)	0.000002	US South Central	Storage	MODIS Source Data Products		External
4/15/2010	Storage Windows Azure		Storage (GB/month)	0.105552	US South Central	Storage	Resources		
4/15/2010	Storage Windows Azure		Storage Transactions (in 10,000s)	0.2866	US South Central	Storage	Resources		
4/15/2010	Storage Windows Azure		Storage (GB/month)	155.0917	US South Central	Storage	MODIS Source Data Products		
4/15/2010	Storage Windows Azure		Storage Transactions (in 10,000s)	4.846	US South Central	Storage	MODIS Source Data Products		
4/15/2010	Storage Windows Azure		Storage (GB/month)	14.84042	US South Central	Storage	Reduction Results		
4/15/2010	Storage Windows Azure		Storage Transactions (in 10,000s)	0.0006	US South Central	Storage	Reduction Results		
4/15/2010	Storage Windows Azure		Storage (GB/month)	92.50063	US South Central	Storage	Reprojection Results		
4/15/2010	Storage		Storage Transactions (in 10,000s)	0.0006	US	Storage	Reprolation Samuel		

One day of ModisAzure billing

■ Storage (GB/month)

100 instances @ \$0.12 per hour = \$288 per 24 hours 1 TB @ .15GB/mo = \$150.

Cumulative MODISAzure billing (\$39K)

Summary

Lately it occurs to me What a long strange trip it's been. Grateful Dead

MODISAzure Learnings

- Putting all your eggs in the cloud basket means watching that basket
 - Cloud scale resources often mean you still manage small numbers of resources: 100 instances over 24 hours = \$288 even if idle
 - Where is the long term archive for any results?
- Azure is a rapidly moving target and unlike the Grid
 - Commercial cloud backed by large commercial development team
 - Current target applications are mid-range or smaller -MODISAzure is currently at the fringe
- Scaling up requires additional work as understanding even a 0.01% failure rate is time consuming
 - Bake in the faults for scaling and resilience
 - Bake in the catalog for end:end reconciliation of sources and results

TeraPixel Learnings

- DryadLINQ provides a powerful, elegant programming environment for large-scale dataparallel computing
- Trident Workflows reduce the barrier to modifying the flow while ensuring robust execution at scale

Tipping Points

- Handling the tsunami (even if it's just a small wave) of scientific data isn't quite computer science nor is it science.
 - Both can learn different things from joint work.
 - Computational science can (and may be the only way to) bridge the gap between the data glut and the scientist
- A few repeatable methodologies can generate that "perfect storm".
 - We (the computer science community) can seed that.
- If computing was free and people the only cost, what would we (the computer science community) advise?
 - Absolute performance is less important than time to science more important
 - Repeatability and provenance (by science definition) are key

Acknowlegements

MODISAzure

- Scientists
 - Youngryel Ryu
 - Thomas Moran
 - Dennis Baldocchi
 - James Hunt
- Computer Scientists
 - Jie Li
 - You–Wei Cheah
 - Keith Jackson
 - Marty Humphrey
 - Deb Agarwal
 - Keith Beattie
- Others
 - The FLUXNET Collaboration
 - Roger Barga
 - Dan Fay
 - Dennis Gannon
 - David Heckerman
 - Tony Hey
 - Yogesh Simmhan

TeraPixel

- Dan Fay
- Jonathan Fay
- Dean Guo
- Christophe Poulain
- Hugues Hoppe
- Dennis Crain
- Mac Mason
- Brian McLean
- Michael Kazhdan

http://research.microsoft.com/terapixel

http://research.microsoft.com/en-us/projects/azure/azuremodis.aspx